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A Galerkin—Legendre spectral method for the solution of the vorticity and stream
function equations in uncoupled form under no-slip conditions in a square domain
is presented which fully exploits the separation of variables in the two elliptic prob-
lems, benefits from a nonsingular influence matrix, and is able to solve the singular
driven cavity problem (modulo Gibbs’ phenomenon) even without regularizing the
boundary condition at the corners g 1999 Academic Press
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1. INTRODUCTION

The use of the influence matrix is very common in the solution of the incompressi
Navier—Stokes equations by means of spectral methods. This technique was introduc
the context of the 1D equations for plane channel flows by Kleiser and Schumann for
velocity/pressure formulation [14] and by Dennis and Quartapelle for the vorticity/stre
function formulation as a means of satisfying conditions of an integral character for
vorticity [6]. Uncoupled solution methods based on the influence matrix can however f
difficulties when applied to problems with two or three nonperiodic spatial directiol
For instance, the influence matrix evaluated fau or collocation Chebyshev spectral
approximations tewx-i equations is found to possess a number of singularities relatec
the corners of a rectangular domain, see Ehrenstein and Peyret [7] and the recent reviev
The difficulty of evaluating the value of vorticity on the corners is encountered also in
Chebyshevau-method for the vorticity and velocity equations for 2D incompressible flov
proposed by Clercx [5]. On the other hand, the collocation method proposed by Ngu
Paik, and Chung [15] for solving the-i» equations with two nonperiodic directions, by
enforcing the 2D vorticity integral conditions [17] through the explicit construction of tt
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harmonic functions required therein, does not suffer from any spurious singularity of
influence matrix. Unfortunately, this method prevents a full exploitation of the direct prod
structure of the two-dimensional problem and of its discrete representation by means
spectral approximation.

Recently, the development of spectral methods has withessed a trend toward the (
the Galerkin method to exploit the well known advantages stemming from the variatic
formulation of boundary value problems for elliptic operators, see, e.g., [2, 19]. In particu
fast elliptic Poisson spectral solvers using diagonalization techniques within the cor
of the standard Galerkin method have been developed by Shen using Legendre [2
Chebyshev [22] polynomials. Therefore, these new spectral solution algorithms sh
allow us to reanalyze the issue of the singular nature of spectral influence matrices fo
calculation of incompressible viscous flows.

The aim of this paper is to describe a Galerkin—Legendre method for the uncou
solution of the vorticity and stream function equations in which the influence matrix -
the determination of the vorticity boundary value is free from any singular behaviour. -
method is based on imposing conditions of an integral kind for the vorticity according tc
adaptation of the Glowinski—Pironneau method [8] to the considered spectral approxima
Adistinctive feature of the proposed method is its capability of fully exploiting the separat
of variables in the two underlying elliptic problems. The resulting solution algorithm for t
2D Navier—Stokes equations is characterized by a nonsingular influence matrix for w
we are able to devise an uncoupling of the even—odd components of the vorticity trace
compatible with the inclusion of the corner values. The proposed algorithm is found tc
able to solve the singular driven cavity problem, but for an expected Gibbs’ phenomel
even without regularizing the boundary condition at the corners.

The content of the paper is organized as follows. In Section 2 we describe the Lege
basis proposed by Shen[21] for the approximation of ordinary differential operators and
the explicit representation of the spectral matrices of the second- and first-order deriva
as well as of the mass matrix, including the modes required to impose honhomogen
boundary conditions.

Section 3 is devoted to the study of the spectral solution of the 2D Helmholtz equa
under possibly nonhomogeneous Dirichlet conditions, by means of the Galerkin—Lege
formulation. The problem is stated in Subsection 3.1. The treatment of the Dirichlet bot
ary data over a rectangular domain is described in Subsection 3.2 by recalling the cot
of lifting the nonzero boundary values. More precisely, such a lifting is performed in t
successive steps, the first one to account for the data specified at the corners and th
ond one to account for the boundary values prescribed in the interior of the sides. T
in Subsection 3.3 we introduce a direct solution algorithm based on a bidiagonalize
technique which relies on the eigenstructure of the mass matrices associated with thi
spatial directions instead of the more common method of solving the eigenproblems o
second-derivative operators. The accuracy of the solution algorithm is assessed by
numerical tests and comparisons in Subsection 3.4

In Section 4 the spectral solution of the 2D Navier—Stokes equations in the vorti
and stream function formulation is addressed. First, we introduce the uncoupled solt
method based on integral conditions for the vorticity (Subsection 4.1), second we des:
the influence matrix technique to enforce these global conditions in a Legendre spectral
text (Subsection 4.2) including the uncoupling of the even/odd modes of the trace, the
analyze how the nonlinear term can be dealt with according to the classical pseudosp
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technique (Subsection 4.3), and finally we show some numerical results for the (unreg
ized) driven cavity problem, for both steady and unsteady solutions (Subsection 4.4).
last section is devoted to a few concluding remarks.

2. GALERKIN-LEGENDRE APPROXIMATION

In this section, the Galerkin—Legendre approximation in one dimension is considered
the explicit form of the stiffness and mass matrix is given, following the derivation of Sh
[21] and including the treatment of nonhomogeneous boundary conditions at the inte
extremes.

Let us consider the basis for representing functions @éfined on the intervaH1, 1],

{Lix),0=<n < N} = {1,x/v2, kn_1(1 — X)L, _1(x),2 < n < N},

wherek, = (/n+ 1/2)/(n+n?) andL,(x),n=0, 1, ..., are the Legendre polynomials.
ThusL}(x) is a polynomial of degree for anyn > 0 and, fom > 2, one has Shen’s basis
[21]

Ln72(x) - Ln(x)
J22n=1) °
The normalization of_} (x) for n > 0 has been chosen to make the stiffness matrix coine

dent with the unit matrix of proper dimension, but for the constant mode. In fact, once
stiffness matrixD is defined by

La(x) =

1
Ay = / Ly Lgx)"dx,  n, k>0,
J -1

it is immediate to see that

dn,k = Sn,kv nk=>1,

as a consequence of the Sturm—Liouville equation for Jacobi polynomials and of the
malization

1
2
L L = — k .

For further reference, theN + 1) x (N + 1) stiffness matrix is denoted B to emphasize
that its leading elemeridq o is zero; namely, we write
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Similarly, the(N + 1) x (N 4+ 1) mass matrixM is defined by

"1
m,, = /1 LX) Lg(x) dx, n,k>0.

By elementary properties of Jacobi polynomials or as demonstrated in [21], the only non

elements oM are located along the diagonal and two codiagonals, according to the pe
diagonal profile

0 1 2 3 4 N-2 N-1 N
0 ¢ 0 &
1 0 ¢cg 0 &
2 a 0 ¢ 0 a
3 a 0 ¢ O

M= 4 a 0 Ca 0
0 0 aN-—3
N-—2 . 0 CN-2 0 aN-—2
N-—1 aN—_3 0 CN-1 0
an—2 O CN

A direct calculation gives

2 1 1
=1\ 5 = _—=, = , n=>2,
% \[3 1=3/8 T ontnJan-DenTd
1 2

:2’ C:*, Ch = — ) nZ
@ 173 "T @2n—3)2n+ 1)

For completeness, we give also the maBiexpressing the Legendre approximation o
the first derivative, namely, the coefficients

1
bk = / L) L) dx, n,k>0.
-1

In this case, one finds that the only nonzero elementB afre located along the two
codiagonals nearest to the diagonal, as

0 1 2 3 4 N—1 N
0 0 b
1 |00 b
2 b 0 b,
3 -b, 0 bs
B =
4 —bs 0
: - bn-2
N-1 —bn_2 0 bn_1

N _bel 0
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A direct calculation gives

. - 1 — 1
b=«/§, b: ) b:—,
23 V3
b, = L , n>2
an? -1

Note that matrixB is antisymmetric only when it is restricted to the rarigek) > 2.

3. HELMHOLTZ EQUATION

The prototype algorithm for solving Poisson and Helmholtz equations in a rectangle
spectral methods is the diagonalization technique proposed in [9, p. 150]. This algorithn
beenimplemented by Haidvogel and Zang using Chebyshev polynomials daditiethod
[12]. Recently, a diagonalization algorithm for the direct solution of the Galerkin variatiol
approximation of elliptic equations by Legendre polynomials has been introduced by S
[21].

In this section we describe an algorithm based on diagonalization for the solution
Helmholtz equation supplemented by a nonhomogeneous Dirichlet condition. A distinc
feature of the method to be described is that it exploits the direct-product structur
the spectral approximation in all its algorithmic components, including the lifting of tl
nonzero boundary data which is the most appropriate way to account for a nonzero Diric
condition within a variational framework. As explained for instance in Strang and |
[23, pp. 70, 199-203], the lifting consists in subtracting to the unknown a conveniel
smooth function whose trace is equal to the prescribed nonzero boundary value and v
is, for the rest, completely arbitrary.

The content of this section is organized as follows. First, the spectral approximatio
applied to the solution of the Dirichlet problem for the Helmholtz operator. Then, a detal
analysis of the lifting necessary to impose the nonhomogeneous Dirichlet condition a
discrete level is given. The form assumed by the discrete lifting is such that the Diric
boundary values are accounted for in an original fashion by solving a mass matrix prok
for each side. The values of the Dirichlet datum at the four corners are employed by
algorithm together with the values at the Gauss—Legendre points of each side. A bic
onalization algorithm for the efficient solution of a Helmholtz equation in a rectangu
domain is proposed along lines very similar to Shen’s algorithm [21], namely, with 1
diagonalization process based on the eigenstructure of the mass matrix, instead of th
the second-order derivative operator expressed either in a weak or collocation form. O
other hand, differently from Shen’s algorithm we use the diagonalization in both spa
directions. Finally, some numerical tests of the new direct spectral solver are presente

3.1. Spectral Solution of the Helmholtz Equation

Let us consider the Dirichlet problem for the Helmholtz operator with unknown
u(x, y) in the square2 = (-1, 1)?,

(=VZ+y)u=s(x, y), Upq = a),
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wherey is a non-negative constasty, y) is a known source term, aadg¢) is the boundary
datum,¢ being an arclength parameter along the entire boungi@ryAs demonstrated by
Bernardi and Maday [2, pp. 13-14], in order tlzg¥) could be the trace of a function
belonging to the Sobolev spakE () it must be continuous at the four corners. Therefore
denoting the Dirichlet data on the bottom and top sidegtix) anda'(x), |x| <1, and
on the left and right sides g/ (y) anda'(y), |y| < 1, these four functions must satisfy the
following set ofcompatibility conditionst the corners:

al(-1) = a'(D), al(l) = a'(1),
a’(-1) =a(-1, a1 =a'(-1.

As a consequence, we are led to indicate the corner values of the Dirichlet condition &

al =a'(-1) =a(Q, a"=a'(1) =a'(1),
a’=aP(-1) =al(-1), a’=aP@) =a'(-1.

The spatial discretization of the Helmholtz equation is done by means of the Gale
projection method employing the Legendre bdsjgx), n > 0, defined in Section 2. The
approximate solutiony is expanded in the double series

| J
uyx.y) =Y Lreou Ly L.
i=0 j=0

The symbol”¢ is used to indicate a summation acting on the expression on the left, inst
of on the right, as the usudl. This special symbol was introduced to be fully adherel
with the matrix notation used in [4] and is particularly convenient in the derivation of t
algorithms to be presented.

3.2. Discrete Lifting of the Dirichlet Data

The presence of the (four) compatibility conditions at the corners has a consequent
the process accounting for the nonhomogeneous Dirichlet condition by means of a lif
This is clearly seen when the lifting is performadalytically, as done, for instance, in [21,
Sect. 4.2]. In the present article we formulate the lifting in a fully discrete form based
the point values of the Dirichlet data to make the Helmholtz spectral solver applicable
to the solution of the biharmonic problem as an uncoupled system of two second ¢
elliptic equations. In this case the trace of one of the two unknowns is defined onl
the discrete sense within the algorithm. As a consequence, in the following we introc
a lifting which is characterized by the successive treatment of the Dirichlet values at
corners with respect to the other values prescribed at points internal to the four side
this way the complete separation of variables at the spectral level is achieved, in confor
with the direct product nature of the polynomial approximation.

The lifting of the Dirichlet boundary datum(¢) consists in expressing the solutiaof
in two parts, as

Un(X, y) = ud (X, y) + U3 (X, y),
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whereu$ (x, y) satisfies the homogeneous Dirichlet condition, whenga&, y) is an
arbitrary function which approximateg¢) on a<2.
To determine the liftingi%, (X, y) we choose to split it in two separate contributions,

u (X, y) = uR(x, y) + Ux°(x, y),

whereu$°(x, y) is the component to account for nonzero Dirichlet values attraers
while u§®(x, y) is the component to relieve the nonzero boundary values in the interiol
thesides

The first component°(x, y) is determined by a collocative approach, which enable
one to satisfy the Dirichlet boundary condition in a strong sense exclusively at the corr
This is indeed a useful property, especially if one considers the method as a starting poi
applications to more complex domains via a domain decomposition approach. The se
componenu?°(x, y) of the lifting is defined by the Galerkin—Legendre approach, whic
guarantees the optimality of the approximationl(finorm). The combination of these two
components is finally used to perturb the right hand side of the discrete Helmholtz equc
to obtain the final system of algebraic equations.

It is convenient to introduce the following partitioning of a matrix of Legendre coef

cients,

uo | ym

U= ,

ub | ym
whereU © is the 2x 2 matrix associated with the basis elements which are nonzero
the cornersy ™ andU™ are(l — 1) x 2 and 2x (J — 1) rectangular matrices associatec
with basis functions which are nonzero respectively on the horizontal and vertical sides
for the interval extremes, and finaly® is a(l — 1) x (J — 1) matrix which contains the

coefficients pertaining only to the “internal modes.” According to this partitioning shown
the rectangle in Fig. 0, the matrix representation of the Legendre coefficients of the lif

ud (X, y) will be
Ua(c) Ua(v)
u?2 = — .
(Ua(h) 0 >

FIG.0. Schematic of the matrix structure of the 2D Helmholtz problem discretized by the Galerkin—-Leger
spectral method.
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3.2.1. Corner Component of the Lifting

As anticipated, the corner componefif’(x, y) of the lifting is determined by a colloca-
tive approach, i.e., we write

Ua’c(—l, 1) — atl’ ua,C(l’ 1) — atr’
u*%(—1, -1 =a,  u*%1, -1) =a".

It is natural to seek this part of the lifting in the subspace spanned by the basis functiol
(X, y) which are nonzero on the corners, namély(x)L§(y), L§X)Li(y), L3(x)L§(Y),
LT(x)L3(y). Accordingly, using the direct-product notation, we have

W, y) = (L) L00)Ue® < L6) ) |
L1(y)

Therefore the system of four equations can be written compactly as

L(=D LiC=D ) ja( LoD Ls@D ) _ ab a
Lo LI L1(=D LD a” a"
and is nonsingular.

3.2.2. Side Component of the Lifting

OnceU?© has been determined, the second step of the lifting consists in evalua
its side componenif*(x, y), namely, to comput&)2®™ andU2" by means of the (1D)
Galerkin—Legendre approach. The functidf(x, y) will be soughtin the subspace spanne
by basis functions ofx, y) that are zero on the corners and nonzero on the sides, and wt
trace on the boundary is the orthogonal projection, in the sense aftmmer-product, of
the boundary datum once the corner nonhomogeneous part has been subtracted. Ir
terms, we have to determing;°(x, y) such that

j{ vuﬁs:% v(a—ua,ijc),
aQ aQ

wherev(x, y) represents any function belonging to the same subspace in whick, y)
is sought.

Writing the boundary integral as the sum of the contributions due to the four sides,
orthogonal projection can be written as

/ vuijs—i—/ vui,’s—i—/ vuijs—l-/ vuijs
aQP aQ! lol aQr

ol RGN SRy I R R )

By virtue of the vanishing of any at the corners, the contributions of the top and bottol
sides can be uncoupled from those deriving from the left and right sides by choosing
functions which are nonzero on the horizontal sides and vanish on the vertical ones.



314 AUTERI AND QUARTAPELLE

vice versa, and by expanding the lifting in the same basis. Eventually, the whole prok
separates in two independent ones, each of them being associated with two parallel s

[ [ooute= [ o)+ [ o - ).
Qb Q! QP It
[ oo [ v [ o)+ [ ol - ),
Q! Q" Q! Q"

Let us express each of the two problems in a discrete form and consider first the prol
associated with the horizontal sides. We introduce the test functions

Li*(x)L’j*(y), for2<i<landj=0,1,

and the expansion

RS x, y) = ZL ULy “+ ) LreourvLs (WZ

j=01 i=01

Now, by takingv(x, y) = LiOOLT(Y) with2 <i’ < | andj’ = 0, 1, the discrete form of
the problem becomes, after interchanging integration and summation,

1
Z(/ POOLY (x)dx)ua‘“>L-<—1> LD

i=2 1 j=0,1

|
+Z(/ L oLy (x>dx) UL L
i=2

j=0.1

1 1
=/ L (x)aP(x) dx L5(=1) +/ L ()a'(x) dx L (1)
-1

—Z</ L5 (x)L* (x)dx) UroLr-1 “ L=

i=0,1 j=0,1
- (/ Li (oL (x)dx)uf‘fC)Ljf(l) L.
i=0,1 j=0,1

In terms of the mass matrix elemerik; = f L, (x)L{*(x) dx, the equation above can
be written compactly as

ZM. UYL DL + Lol )] £

j=01
1 1
=/ L (0a°(x) dx L]-‘,(—l)—i—/ L 0@l (x) dx L¥ (1)
-1 -1

- MU L DL -y + L] L.

i=0,1 j=01

Introducing the 2« 2 matrixH with elementsH; ; =L (1) Li(=D+Li®D) Lj—‘(l),i =0, 1,
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andj =0, 1, the weak equations become, forevery2 < | andj’' =0, 1,

|
> MUY H L
i=2

j=0.1

1 1
:/ L7 ()a°(x) dx Lt (—1) +/ Ly oal ) dx L) — > M UAOH; ~d.
—1 -1

i=0,1 j=01
In the actual algorithm, the integrals on the right-hand side are evaluated approximate
means of the Gauss—Legendre quadrature formula to give, for instance,

1+1

1
/ L7 (x)a(x) dx =Y _ L}(xg) wga(xg).
-1

g=1
wherexy andwg, 1<g<1+1, are the quadrature nodes and their respective weigt
Accordingly, the previous weak equations assume the form

|
> MU H e
i=2

j=0,1
I+1
=Y Lixguwg[a(xg L7 (1) +a'(x)L3(D] = Y MU OH,; ~L.
g=1 i=0,1 j=0.1

The whole system can be recast in matrix form by introducing the vector of the Gat
Legendre weights

w={wg,1<g=<1+1}

the arrayZ of values of the Legendre functions computed at the Gauss—Legendre'noc
namely,

L={Lyi =L{(Xy),1<g=<I1+10<ic<l},

and finally the two vectors of the values of the Dirichlet conditiah) anda®(x) at the
same quadrature points:

A={axg).1<g=1+1},
AP ={a(xg),1<g=<1+1}.
The full system in matrix form reads as
MUZH = LT {w [A(L5(=D) Li(=D)+A(LQD) Li®D)]} - MPUrOH,

wherex denotes the element-by-element multiplication of vectors and where we introdu
the following partitioning of the mass matrix,

M© MbOT
M= .
M® M
1 Here and in the following, script letters are used to indicate quantities evaluated at Gauss—Legendre quac
points.

2 Sans serif characters are used throughout to denote vectors and matrices which pertain only to internal r
that is, to basis functions vanishing at the extremes of the interval.
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In particular, for our basis, the matrkt is diagonal and therefore the system of equatior
can be written as two fully decoupled systems eactl 6f 1) unknowns. In fact, for the

( > ’
0 1

and the two uncoupled systems to perform the lifting on the horizontal sides are
1
MU:éh) = éﬁT[w* (AP + AY] — M(h)U:(()c)’

MU2 = %U[w* (A= A" = MPU2E.
It is important to remark that, irrespective of such a decoupling, the side component of
lifting cannot be evaluated on a side by side base.
The same procedure can be adopted for the two vertical sides, and it is not repe
for conciseness; the result is the transpose of the former expression by virtue of the c
product nature of the basis and reads

1
Ug.'N = él(A' + AT K — UGONW,

1
UiiV)N — 7[(Ar _ AI)T*V]/C _ UiiC)N(V)’

V2

whereN is the counterpart for the direction of the mass matriw, namely,

N — ( N(© N(V)>,
NWT N

the vecton = {w(Xg), 1 < g < J + 1} contains the weights of the Gauss—Legendre quadt
ture formula withd +1 nodes andC={Lgy; = L{(Xg),1<g<J+1,0<i < J}. There-
fore, the side component of the lifting requires us to solve two mass matrix problem:
size(l — 1) and two problems of sizeJ — 1).

By summarizing, the set of boundary values which are needed by our spectral solt
algorithm for the Dirichlet problem comprises the values prescribed on the unknown a

four corners as well as the values at the (1D) Gauss—Legendre points located on eact
Consequently, the proposed elliptic solver is fed by the following two sets of Dirichlet de

{a“, a’, {{a‘(xg),a”(xg), 1<g=<I+1},
{a(yg).a'(Yg). 1 =g = I +1},

which amount to a total of 4 2(1 + J +2) = 2(1 + J) + 8 distinct boundary values.

By contrast, spectral elliptic solvers based on the collocation method use a total of
2(1 +1)+2(J —1)=2(l + J) Dirichletdata[16]. Therefore the proposed method sampl
the Dirichlet boundary data at 8 more points than collocation schemes with the same nu
of polynomials. We feel that this treatment of the discrete Dirichlet data by our algorit
is essential for making it possible to determine the vorticity boundary value, includ
the corners, in the unregularized driven cavity problem by an uncoupled spectral met
since the wall distribution of vorticity is discontinuous (actually singularly discontinuou
at the two corners of the moving side of the cavity. It is worth concluding the presentat

ad ; abr’
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of the discrete lifting for the two-dimensional problem by remarking that its extension
the three-dimensional elliptic equation with fully nonperiodic boundary conditions is
obvious unless one clarifies the nature of possible compatibility conditions for the Diricl
data of the three-dimensional problem.

3.2.3. Perturbation of the Right-Hand Side

The lifting of the Dirichlet datum can be seen as a perturbation on the right-hand sid
the linear system of the discretized version of the Helmholtz equation. In fact, by allow
all degrees of freedom including also those which are nonzebdnthe weak formulation
of the Helmholtz equation reads

‘DUN + MUE+ yMUN =S,

whereU =U°+U?, °E is the y-counterpart of matrixD, and S represents the Galerkin
projection of the source(x, y) onto the Legendre basis, namedy; = (L7 (X)L} (y),
s(x,¥))), 0=, j) =, Jd), the integral being evaluated numerically by means of tt
direct-product Gauss—Legendre quadrature formula.

By exploiting the matrix partitionings introduced before, the system of equations f
taining to the internal test functions assumes the form

(D(h) D) uao yam NV —i—(M(h) M) ya© yam EW
yab U N yab U E
uao yam NW
0 _
+y(M M)<Ua(h) y >< L) =S

whereU = U%® ands = SY. Since the coefficients i) ©, U™ andU " are known,
the relation above can be rewritten transferring the corresponding terms to the right-|
side. In particular, for the Legendre basis we are working with, submatfi€eésind E
are null and the right-hand side becomes

S—> R=S—-A,
where
A=Ala,y] = DbURPNV L MOyavg
—i—)/(l\/l(h)Ua(c)N(v) + M(h)Ua(V)N—i— MUa(h)N(V)).
Note that, when the source term of the Helmholtz equation is known in terms of

Legendre coefficients, instead of itsL? projection, the right-hand side of the discrete
system above assumes the form

R=MSN-A,
where the double bar denotes the suppression of both the first two columns and the firs
rows of the underlying matrix.
3.3. Mass-Matrix-Based Bidiagonalization Algorithm
The final system of discrete equations to be solved assumes the form

DUN + MUE + y MUN = R,
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where

D=lj-1), E=ljy-y1,

U={u 2= @, )=,

M={mii = (LX), Lj\(x)),2 < (,i") < 1},
N={njj = Ljy, L7y, 2=<(,|) < I}

We retain the identity matrice® and E in the expression above to emphasize that for
rectangulardomain suitable scaling coefficients must be included.

To solve this linear system, in a preliminary step we solve the symmetric eigenve
problem [1] for the two mass matricas and N, namely,Mw® =x;w®, 2<i <1, w=
w@, ..., w®] and WD =ojvD, 2<j<J, v=[v®@, ..., vI], so thatwTmMw=A
and VTNV = X, whereA and X denote the diagonal matrices of the eigenvalues/ ahd
N, respectively.

As a consequence of the double transformatior R= W TRV and the analogous one
for U, the linear system becomes

UX + AU+ yAUX = R,
which is solved, componentwise, by
Upj=1Lj/(o)+ A +yrio)), 2=<(,))=<(,J).

The sought for solution is then obtained by computing the anti-transtoenu = wuv T
and finally mergingu with the precomputed Legendre coefficients of the lifting, to give

U= Ua(c) Ua(v)
S \ua oy )

3.4. Numerical Tests

The algorithm has been tested first by solving the Poisson equation supplemented k
homogeneous Dirichlet condition with the exact solutiea sin(4x X) sin(4ry) considered
in [12]. The maximum pointwise errors of the proposed Galerkin—Legendre algorithm
compared in Table | with the results provided by tha-Chebyshev method [12] and the
Galerkin—Legendre method of Shen [12]. The present method is always more accurate
itstau-Chebyshev counterpart but does not reach the accuracy of the (single) diagonaliz
method of Shen.

TABLE |
Maximum Pointwise Error: Solution u = sin(4mx) sin(4my)

I xJ tau-Cheb. [12] Gal.-Leg. [21] Gal.-Leg.
16 x 16 333x 1072 293 x 10°° 2.82x 1072
32x 32 477 x 1071 3.44 x 10718 255x 1071
64 x 64 867 x 1071® 5.55x 10715 4.10x 1071

128 128 200 x 1072 6.88 x 107° 544 x 1071
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TABLE Il
Maximum Pointwise Error: Solution u = x? + &Y
I xJ Galerkin—-Legendre
8x8 232x 10°
16 x 16 444 x 10713
32 x 32 104 x 10712

The second example is the solution of the Helmholtz equationthl.5 supplemented
by the nonhomogeneous boundary condition, the exact solution being + e>*Y. The
numerical errors for different resolutions are given in Table II.

4. VORTICITY AND STREAM FUNCTION EQUATIONS

4.1. Uncoupled Formulation

Let us consider the Navier—Stokes equations for 2D flows expressed in terms of
variables vorticity; and stream functiony. Taking into account the nonlinear advectior
term explicitly, the equations discretized in time can be written in the following uncoup!
form [18]

0
Q s \an

-V =¢, Ype=a,

wherey =Re/At, f =y —ReJ (¢, ¢°d), ¢ = " andy =Y. In the integral
conditions above; represents any function harmonic in the computational do@aivhile

a andb denote the boundary data fgrand(d+/dn), respectively, which can be expresset
in terms of the velocity specified on the boundaty. As previously stated, the Dirichlet
datuma must be assumed to be continuous at the four corners [2, p. 93], while the Neun
datumb is not required to satisfy such a condition [and in facis discontinuous in the
classical {(e., not regularized) driven cavity problem, to be considered in the numeri
tests]. For an iterative multigrid method for the spectral solution of the coupled syster
¢-y equations the reader is referred to [13].

4.2. Spectral Influence Matrix

To enforce the vorticity integral conditions one introduces the decompositipn of
¢=0+> ek,
k'=1

wherez®and¢K are the solution of auxiliary Dirichlet problems for the operateV? + y)
with suitable boundary conditions. In particular the traces of the functibrsonstitute a
basis for the Sobolev spa¢t2(3Q). The imposition of the integral conditions gives the
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linear problem for the unknowns., k'=1, 2, ...,
AL = B,

where

Ak_k/z/n";k/, kk=12...
Q

ﬁk:—/nkgo—% n“b, k=12....
Q a0

By adopting the Glowinski—Pironneau method (for details see [18]), one can get ric
the harmonic functions® by introducing auxiliary functions)¥ at the expense of solving
one additional elliptic equation for eadh=1, 2, .... The wX’s are such that their trace
is coincident with that of the harmonic functions while, for the rest, they are complet
arbitrary. In terms of these functions, the influence operatand the right-hand sidg
can be shown to be characterized equivalently by

Ack = / (wkfk, — VuX. Vwk/),
Q

B = — / (wke® — vwk. vy O) — ]{ w*b,
Q Q2
where the fields/X andy° are solutions to additional Dirichlet problems for the Laplac
operator [18].
Coming now to the problem discretized by the Legendre spectral method, we introc
the finite dimensional basisvX(x, y), 1 <k < 2(1 + J)} of functions defined as

wH Y =L, w' PR y) = Lo . O<i=l,
w? Ty = Li(y), w0y = FLiy),  2s<j<3

Thus, the discrete basis consists of the four “groups” of functions above, that will be indic:
byw®, w®, w®, andw™ inthe following, where the overbar is used to emphasize that t
components correspondingjte= 0 andj = 1 are excluded since they are already account:
for by the first two components af® andw®@. In other words, the four functions® with
nonzero value at the corners are included as the first two componant8 ehdw®?. This
will cause a seemingly asymmetric treatment of the two directioaedy in some later
expressions.

The discrete representation of the unknown figldsdy is

| J
Gy =Y Liooa Ly L
i=0 j=0
J

|
NG Y) =Y LEo v Loy L,
i=0 j

j=0

and we denote the Legendre coefficients collectively by matries{s; j, 0<(, j) <
(I, Hrand¥ ={y;;,0=<(, j) <, D}



GALERKIN SPECTRAL METHOD 321

The influence matriXAy of order 21 + J) is constructed and gives the symmetric definit
positive linear system

AN =3,

with A = {Ak, 1 <k <2(1 + J)}andB = {Bk, 1 <k < 2(1 + J)}.
We consider now thé&’th column vector ofAy, denoted bya, which involves the
functionsz andyK, indicated here byy andyy, for conciseness; we have

a = / (when — V- Vyn),  1<k<2(+J).
Q
Let us consider the two contributions to the integral separately and denote them as

ykz/wng and Skz/Vwk-VI/fN.
Q Q

A direct integration allows us to determine the four “segments” of the vegtahich
correspond to the four subsets of basis functiohslefined above:

y® =omzZN, y® = mzZN.

Hereny, n,, om, and; m denote the first two column and row vectorsondM; namely,
we have defined

Np =N, o0 n=n,,,
oM=Mp,, M=mg,.

Furthermore, the overbar indicates that the first two components of the vector (of lel
J + 1) under it are skipped, to obtain a vector of length 1, as bothy™ andy™ are. It

is important to note that the multiplication &f by n,, n,, ;m, and,; m in the expressions
above is actually a linear combination of only two (column or row) vectors, since only t
components of vectors,, n,, ;m, and; m are different from zero: we have in fact

Zny =&, 0Noo + & 2Nz 0

Zng =8, 1Ny 1+ 8, 3N3 1,
and similarly for the other two terms. In the same spirit, we notice that also the produc
the mass matriceld andN involves only three elements per each row, due to their spars

Once the four “segments” of have been evaluated, they are combined to give the glol
vector according to

~ = {)/(1), V(Z)’ )7(3)7 )7(4)}'

The evaluation of the second contributigp= fQ VwK. Vi proceeds in the same
way and by direct integration one obtains

8D =Dwn,, §@ =Dwn, + My, 1,

§@ = )mUE, 6@ =1y N+ mu°E.
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Again, the overbar indicates suppression of the first two components of the underl;
vector. The compound vector is

§ = {3<1>’5<2>’5_<3>’§<4>}7
and the final expression of each column vectoAgfis
a=~-—24.

After the solutiom\ has been determined, the values at the corners and at Gauss—Lege
points of the sides—the input to the Helmholtz spectral solver—are evaluated from
expression

| J
(X, y) = ; L (x) {Mﬂ + Al g2 jﬁ} + [/\2I+1+i + \;(EAZH-JH'] Li(y) % .
By summarizing, the Glowinski—Pironneau method avoids the explicit construction
the harmonic functions occurring in the vorticity integral conditions but requires us
solve a double number of Dirichlet problems to determine the influence mfagrixnd the
right-hand side3. This spectral version of the Glowinski—Pironneau method differs fro
its finite-element counterpart in that the integration extends here over the entire dor
instead of being limited to the strip of elements in contact with the boundary. However.
virtue of the high sparsity of matrices associated with the Legendre polynomials combi
with the direct product nature of the 2D spectral approximation, the full-volume integr
can be evaluated very fast, as just shown. All the Dirichlet problems for the Helmholtz.
Poisson equations of the uncoupled method are solved by means of the bidiagonaliz
algorithm described in Subsection 3.3.

4.2.1. Even—-0Odd Uncoupling

The method just described for enforcing the vorticity integral conditions presents
drawback that the influence matri is considered as a single full matrix, whereas it ha
very many zero entries because the even and odd components of the trace in a recta
domain are not coupled by the operathr Therefore, for computational efficiency, it is
convenient to exploit the even—odd uncoupled charact&gddy introducing four subspaces
of the spacdwX(x, y)}, each subspace being chosen so as to account for, respectively
even—even, odd—even, even—odd, and odd—odd component of the trace. In the constr
of these bases we are faced again with the subtlety of accounting properly (and not tv
the effect of the modes associated with functions which are nonzero at the four corners
most natural bases for the four aforementioned uncoupled components of the trace al

w?ee(x, y) = Lim ), ie(n) =2(n—1), n=22..., L +2)/2];
WX, Y) = L1 (), JeM =2[n— (1 +2)/2]], n=[(+2)/2]+1,...,1( +2)/2]
+13/25;
Whe (X, ¥) = LI (%), io(n) =2n-1, n=12...,[(I +1)/2];
Wiog (X, Y) = %L?e(m(Y), je =2[n—[(1+1)/2]], n=[0+D/2]+1,..., L +1)/2]
+13/2];
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Weo (X, Y) = L (0 %5, ie(m) =2(n - 1), n=12....10+2/2

wWhe (%, Y) = LT 0 (. oM =2In— (1 +2)/2]]+1, n=[(1+2)/2]+1,....[(1 +2)/2]
+1(3 —1)/2];

Wiy (X, Y) = LE (0%, io(n) =2n—1, n=12...[(+1/2];

Woo X, Y) = BLm®. JoM=2n—[(1 +1/2]]+1, n=[(+1/2]+1,...,
L0 +D/21+ 10 —-D/2].

The single influence matri&y of dimension 21 + J) is therefore replaced by the following
four symmetric positive-definite matrices, indicated here with their respective dimensi

I +2 J I +2 J-1
I +1 J I +1 J-1
o [ (2] e |1

To assess the conditioning of the four symmetric influence matrices, their condition n
bers, in the Euclidean norm,

A max( A)

= |AILIA Y, = ,
xz2 = [ All2llA7]l2 ()

are reported as a function of the matrix dimensMrin Fig. 1, fory = 10°. This shows
thatx» o« M2 consistently with the behaviour of the condition number for Legendre spec
approximation to second order elliptic operators.

4.3. Nonlinear Term

The nonlinear terml (¢, v) is evaluated according to the pseudospectral technique
troduced by Orszag. This means that one looks fotthprojection on the basis functions
of the Jacobian determinant

AN, ¥N)

N y) = (X, y)

)

where the superscrit has been suppressed for simplicity. In this section, the symbo
used to indicate the Jacobian determinant is not to be confused with the upper extrer
the range ofj; the correct meaning of should however be clear from the context.

To determine the valugsl; ;} of the projection, one first introduces point values of th
unknown variables at points in the physical space, for instance,

INX YY) Z—> Z={N(Xg. Yn).1<g=<I1+11<h=<J+1]}
wherexy andy, denote the Gauss—Legendre integration points over the interdafl].

As in Section 3, script letters are used to indicate quantities evaluated at Gauss—Leg
quadrature points.
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FIG. 1. Condition number of the four influence matrices fo= 1000.

As a matter of fact, we need the values of the derivativesydk, y) andyn (X, y) at
these points; for example, considering the derivadigig/dX, its point values

,1§gsl+1,15h53+1}

Xg>Yh

are given by
Zx =L'ZKT,
where we have introduced the point quantities

L={Lgi=L{(Xg),1<g=<1+10<i=<l}
E’:{Ug,i:Li*(xg)/,lggflJrl,Ogi <1},

and similarly forC andk’, with the corresponding subscrigtend j ranging over 1< h <
J+1and0< j < J, respectively. Therefore, all the partial derivatives for the nonline
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term are evaluated as

Zo = L'ZKT, 2y =LZKT,
Po = LYKT, Py =LIKT,

and the point values of the Jacobian determinant are obtained from the relation
J = Zx) * Piy) = 29 * Peoy

wherex denotes the element-by-element multiplication of matrices.

As a consequence, the pseudospectral approximation of the nonlinear term is obt:
by numerically projecting (in the? sense) this term by means of the direct-product Gaus
Legendre quadrature formula with + 1) x (J + 1) points, to give

1 1 I+1 J+1
/ / L (x)In(X, y)L’j‘(y)dx dy= Z Li*(xg)ngg,hth*j‘(yh) Z ,
-1J-1 g=1 h=1

wherewg, 1 < g < | 4+ 1, andvn, 1 < h < J + 1, denote the weights of the 1D Gauss-
Legendre formula with(I 4+ 1) and (J + 1) points, respectively. The sought for matrix
J={J ;} of the projection of the nonlinear term is given by

J=L"TWITVK,

where the Gauss—Legendre weights have been framed in the diagonal matrices

w1 V1
wo v2
and Y=

s
I

W41 V41

Thus, the final right-hand side of the discrete vorticity equations reads
R=yMZoN — ReJo,
to which the lifting of the vorticity boundary values has to be subtracted to give, actual
R=yMZo9IN — ReJ% _ 2,
whereA = Al y].

4.4. Numerical Tests

We have applied the uncoupled algorithm to the solution of the driven cavity proble
withoutregularizing the velocity boundary condition at the corners, where the horizor
wall slides on the stationary vertical walls. At these two points the no-slip datusn
discontinuous when passing from the vertical to the horizontal walls. As a conseque
the solution of the not regularized problem has a singular behaviour at these points fol
Reynolds number; the structure of the singularity of the steady solution at these two p
has been investigated by Guptsal. [11].
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We first solved the creeping flow problem (R®) by the spectral method usihg=J =
200 over the unit square [@]?. The plot of the vorticity contours and the streamlines ar
given in Figs. 2a and 2b. The solution agrees fairly well with the known reference solut
except for the vorticity in a very narrow layer on the vertical sides and in the bottom corn
where¢y is found to be perturbed by small spatial oscillations at the smallest scales of
spatial resolution. This is clear evidence of a Gibbs’ phenomenon caused by the atten
resolve the strong singularity of the solution at the two top corners by means of a polynol

FIG. 2. Stokes flows in the square cavity problem, without regularization of the velocity boundary condit
at the upper corners. Vorticity contours (a) and streamlines (H) fod = 200.
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approximation with roots clustering near the interval extremes. The Stokes solution has
reported here just to emphasize that these Gibbs’ oscillations are not related to the pre
of nonlinear terms.

We notice that, in spite of this severe singularity, the present method provides a
rect discrete solution which satisfies the global conservationj}gmq = —fm b—within
round-off errors. This relation is in fact nothing but the integral condition with respect
the harmonic functiom(x, y) = 1.

One could observe that computing the vorticity field of the not regularized driven ca
problem by an uncoupled method is somewhat paradoxical. In fact, on the one han
vorticity trace displays a very singular behaviour at the two upper corners, sinceo
or —oo, according to whether the corner is approached along the vertical rather thar
horizontal wall. On the other hand the boundary datum for solving the Dirichlet probl
for ¢y must be continuous at the corners. The point is that the proposed scheme em
the corner values as an independent meaningful component of the Dirichlet boundary
while, at the same time, it allows for a discontinuous behaviour near the corners, sinc
boundary values are specified at the Gauss—Legendre points of the four sides.

The second test calculation is the solution of the Navier—Stokes equations£ot G090,
starting form rest. The solution has been computed withJ =100 andl = J =150,
using a time step\t = 0.005 andAt =0.001, respectively. The steady-state solutiogs
andyy att =50 on the two grids are shown in Figs. 3 and 4 (maximal pointwise differen
between the last two time step®4 1076 for ¢y and 39 x 1078 for ¥y ). The reduction of
the spatial scale of Gibbs’ oscillations Bs(=1 = J) increases is evident. A comparisor
with the reference solution [3] in the eye-ball norm (which is surely adequate for the purg
of the present article) indicates that the computed spectral solutions are in a very satisfa
agreement, but for Gibbs’ phenomenon, including fine features of the flow as the the
tertiary eddies in the bottom corners.

To check that Gibbs’ spatial oscillations do not prevent the development of the cor
dynamics, we reportin Fig. 5 the unsteady solution at tisa&.25, when the eddy generated
at midheight on the downstream vertical side coalesces with the recirculation develo
in the bottom right corner. The spectral solution fee J = 250 is compared with another
solution evaluated by means of a numerical scheme based on a new weak formul
of the ¢-y equations with an explicit treatment of the viscous diffusion term [10]. Th
formulation has been implemented by the finite element method using linear element:
adopting a second-order accurate BDF time discretization with a fully explicit accoun
the viscous and nonlinear termg linear extrapolation in time. The mesh is nonuniforn
and consists of 807 triangles. The FEM solution depicted in Fig. 6 demonstrates th
a correct simulation of transient flow is possible even in the presence of Gibbs’ numel
pollution brought about by the corner singularities (the labels of the vorticity contours
the spectral and FEM solution are different due to different adimensionalizations).

We insist that the singular component of the steady solution was not subtracted ir
present study purposely justto demonstrate that spectral solutions can be computed irre
tive of the high singular behaviour of the vorticity field. The presence of spatial oscillatic
in ¢y at the smallest wavelengths indicates that a proper treatment of the singularities
order to recover spectral accuracy [3]. Alternatively, the problem could be modified by 1
ularizing the boundary conditions as done, for instance, in the study about Hopf bifurce
in driven cavity flows by Shen [20].
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FIG. 3. Steady-state solution of the (unregularized) driven cavity problem foe Rg00. Vorticity cont-
ours (a) and streamlines (b) for= J = 100.

5. CONCLUSIONS

We described a spectral method for solving the unsteady incompressible Navier—St
equations in a rectangular domain within no-slip boundaries, expressed in terms o
nonprimitive variables vorticity and stream function. An uncoupled formulation has be
adopted by enforcing conditions of an integral type on the vorticity according to an ac
tation of the Glowinski—Pironneau method to the present Galerkin—Legendre spatial
cretization. The nonlinear term of the vorticity equation has been discretized in time
a fully explicit manner and has been evaluated according to the pseudospectral tech
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FIG. 4. Steady-state solution of the (unregularized) driven cavity problem fos Rg00. Vorticity cont-
ours (a) and streamlines (b) for= J = 150.

of Orszag. The numerical scheme requires us to solve a cascade of elliptic equation
building in a preprocessing phase the Glowinski—Pironneau influence matrix or the
smaller influence matrices associated with the uncoupled even/odd components of th
known trace of vorticity. Then, each time step requires us to solve two pairs of Helmh
and Poisson equations, both supplemented by Dirichlet boundary conditions, plus the s
symmetric positive-definite linear system or the four irreducible independent system
the same kind to enforce the vorticity integral conditions on the rectangular domain.
The second-order elliptic equations are solved by means of a bidiagonalization algori
after the effect of the possibly nonhomogeneous Dirichlet condition has been taken
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0.125.

FIG. 5. Spectral solution of the unsteady (unregularized) driven cavity problem with impulsive start
Re=1000 att = 6.25. Vorticity contours (a) and streamlines (b) fox J = 250.

account by a lifting. The latter is formulated at the level of the discrete equations and
form fully compatible with a direct product implementation of the algorithm. In this wa
the proposed spectral method achieves the highest degree of separation of variables
solution of the biharmonic problem as a system of split equations which is compatible \
the presence of nonperiodic boundary conditions in both spatial directions. Under thes
potheses, a complete variable separation of the spatial dependence in the two directi
possible for each of the component Poisson equations, but, at the same time, a nonsep
aspect remains in the uncoupled solution algorithm as a consequence of the fact th:
four influence matrix operators “go all around” the entire boundary of the computatio
domain.
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FIG. 6. Finite element solution of the unsteady (unregularized) driven cavity problem with impulsive st
for Re= 1000 att = 6.25. Vorticity contours (a) and streamlines (b) using a nonuniform mest2of 8¢ linear
triangles.

The method has been applied to solve the driven cavity problem retained in its origin.
not regularized—form. The proposed method is found to afford the solution of that sing
problem without facing any singularity in the influence matrices. The computed soluti
for Re= 1000 using 100 or 150 Legendre modes in both directions agree very well with
reference solution, although a Gibbs’ phenomenon is clearly seen, pointing to the exig
of subtracting the corner singularities if the spectral accuracy has to be reached in this
smooth problem.

The success of the proposed Galerkin spectral approach in the uncoupled solution «
vorticity and stream function equations suggests that it could also be effective in elimina
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spurious singularities of the influence matrix encountered sometimes in other uncou
formulations of the incompressible Navier—Stokes equations.
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